Eye tracking and physiological data

Tutorial ETRA
Tübingen/Germany, 30.05.2023

Schedule

9:00-10:00	introduction, presentation of methodology
10:00-10:15	coffee break
10:15-13:00	hands-on data collection
13:00-14:00	lunch break
14:00-15:30	group work to analyze the data – analysis of each sensor separately
15:30-15:45	coffee break
15:45-17:00	group work to analyze the data – analysis of all sensors combined,
17:00-17:30	discussion of the results and special solutions modules

Why eye tracking?

- Objective measure of perception that the respondent cannot influence.
- Simple and less invasive measure.
- Simple and intuitive metrics.

Why combine eye tracking with physiological data?

- Gaze alone says little about the subject's emotional state,
- Verification of neuromarketing statements,
- Obtaining other objective parameters,
- Market research: investigating whether a brand has an emotional impact
- UX: at what points is the respondent confused or stressed?

Which parameters are measured?

- DFA/GSR
- Pulse, heart rate, ECG
- Breathing
- EMG
- **EEG**
- NIRS
- Pupils
- Voice modulation

Electrodermal activity

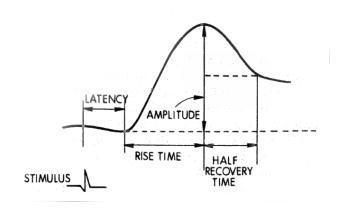
Electrodermal activity

- Arises from increased sweat secretion in response to emotions or stress
- Controlled via the autonomic nervous system
- Normally not influenceable by will
- The electrical resistance or conductivity of the skin is measured (unit: microsiemens).

Classic applications

- Lie detector test
- Detection of the effect of pheromones
- Test for Capgras syndrome

(Source Wikipedia)

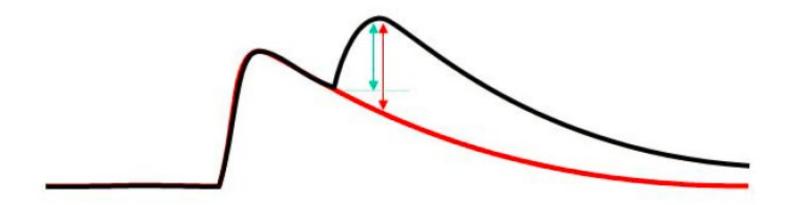

Application in psychological experiments

- Emotional reactions to stimuli
- Type (direction) of the emotion cannot be determined, only the strength
- Absolute values of the curve for a point in time or range have no significance, parameters must be extracted

GSR parameters

Typical reaction of the skin conductivity:

Parameters:


- Latency (reaction time)
- Rise time (excitation)
- Amplitude (stress level)
- Decay time (relaxation)

Extraction of the parameters from the raw data with the help of mathematical methods

Problems with parameter extraction

 Overlapping reactions lead to underestimation

Solution

- Interpolation of the EDA curve by mathematical functions
- Extraction of the parameters from the mathematically ideal curve

Placement of the electrodes

Palm

Fingertips

Foot sole

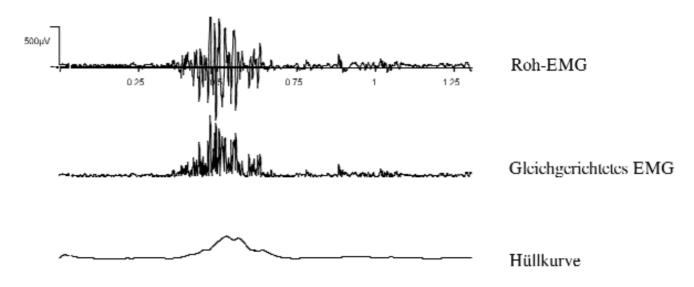
ECG

ECG

- Measures the electrical activity of the heart muscles
- Periodic characteristic curves
- The ECG contains a variety of parameters that are used for diagnostic purposes. In combination with eye tracking, the heart rate is particularly important.

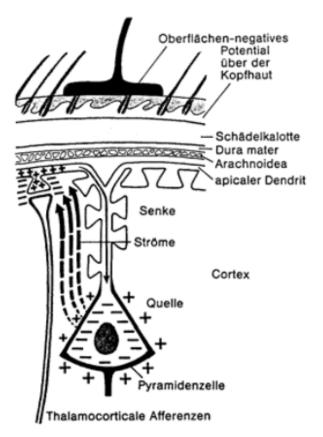
EMG

- Arises from the electrical stimulus to stimulate the musculature
- Series of short, spike-like pulses
- It is not the individual pulses that are relevant, but the envelope curve of the pulses.


Applications

- Diagnosis
- Sport, gait tests
- Working environment, tool studies
- Fatigue studies
- Facial expression

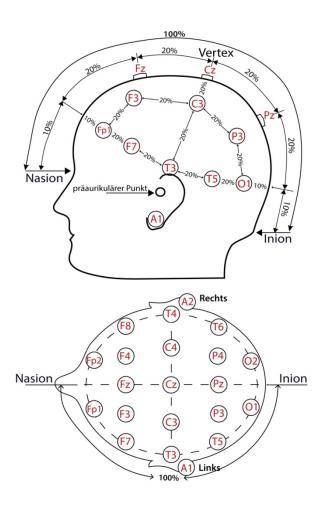
Procedure


- Rectification
- Filtering with low pass filter
- Evaluation of the envelope curve

EEG

- Arises from the electrical activation of groups of neurons in the brain
- Superposition of waves with evoked activities
- Evaluation strongly dependent on the research objective.

Birbaumer & Schmidt, 2003


Application

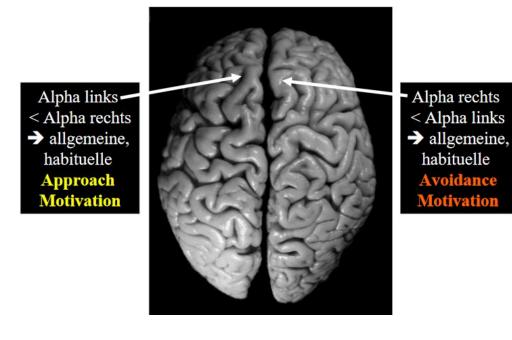
- Diagnosis
- Biofeedback
- Brain-Computer Interfaces
- Neuropsychological research

Electrodes

- ▶ The 10–20 system is common
- For some applications only a subset is used
- Evaluation depending on the brain regions
- Localisation of reactions also possible

Methods

- Spontaneous EEG, frequency analysis
- Evoked potentials
- Event-triggered synchronisation/desynchronisation
- More...


Frequency analysis

- windowed Fourier transform
- Tapes:
 - Alpha (8–13Hz): Relaxation
 - Theta (4-7Hz): dozing, deep relaxation, meditation, hypnosis, lucid dreams
 - Beta (14–30Hz): frontal and precentral, active concentration or anxious tension.
 - Gamma (>30Hz): strong mental effort, learning processes, meditation, increased attention
 - Delta (1-3Hz): in infancy or pathological in dementia
- The lower the frequency of the EEG waves, the lower the activity

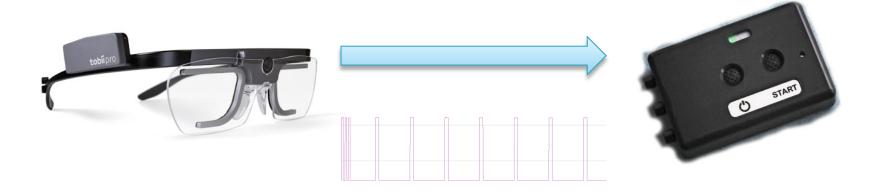
Frequency analysis - example

Alpha rhythm and motivation

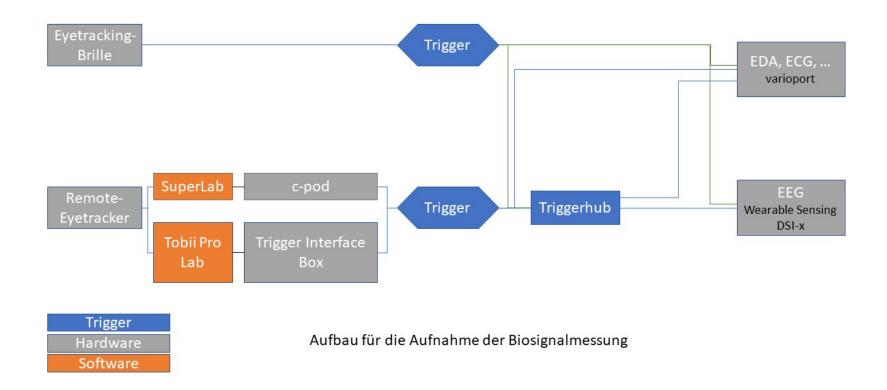
Source: University of Trier

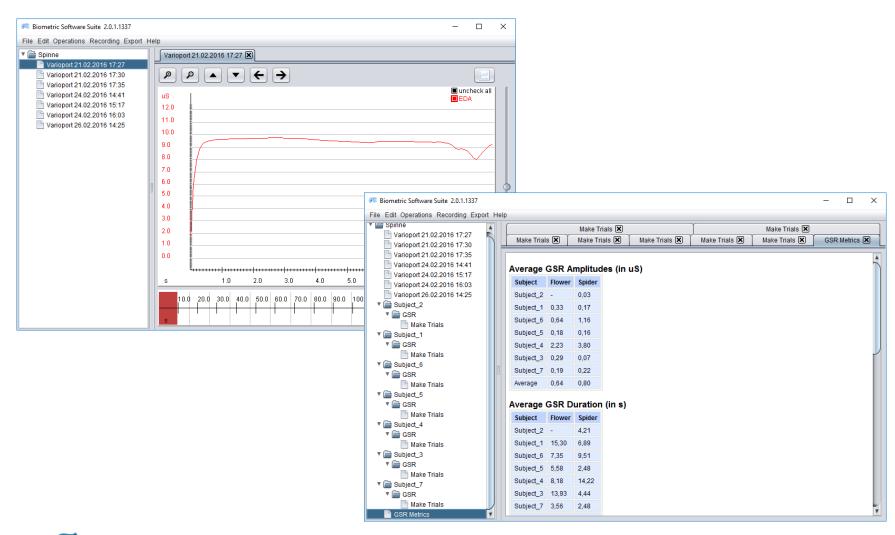
Pupils

- Pupil width Measure of mental workload
- Strongly dependent on incidence of light, ambient light, brightness of stimulation
- Measured directly by the eye tracker.
- Mental workload can be emotional, but it can also be caused by strong cognitive activity.



- Recording units have different sampling rates and different start times
- Online vs. offline synchronisation
- Offline synchronisation allowed
 - Use of precise hardware triggers
 - Recording with the appropriate hardware-software combination
 - Parallel recording


- Tobii Glasses2 or Tobii Lab send pulses for synchronisation
- varioport-e receives the pulses on its own channel
- Pulses are recognised in the Biometric Software Suite, data from both recordings are imported synchronously


- Pulses at intervals of 10s
- 3 short pulses mark the beginning of the measurement

Hands-on

